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Abstract. We investigate the critical exponentsη3(α,M) and η1(α,M) associated with the
singularities in the longitudinal and transverse structure factors of the one-dimensional antiferro-
magnetic Heisenberg model with nearest- (J1-) and next-nearest- (J2-) neighbour coupling of
relative strengthα = J2/J1 and an external fieldB with magnetizationM(B).

1. Introduction

In this paper we are going to study the critical behaviour in the one-dimensional spin-1
2

antiferromagnetic Heisenberg model

H = 2
N∑
x=1

(S(x) · S(x + 1)+ αS(x) · S(x + 2))− 2B
N∑
x=1

S3(x) (1.1)

with next-nearest-neighbour couplingα and external fieldB. The phase structure in the
absence of an external field (B = 0) has been studied intensively before [1–11]. Let us
briefly summarize those results relevant for our later investigation. The ground state of the
model is a singlet (S = 0) state with momentump0, wherep0 = 0 for N = 4, 8, 12, . . .
andp0 = π for N = 6, 10, 14, . . .. This statement holds forα < 1

2. At α = 1
2 the model

reduces to the Majumdar–Ghosh model [10] with degenerate dimer ground states.
The quantum numbers of the first excited state change withα: there is a triplet (S = 1)

state for 0< α < αc and a singlet (S = 0) state forαc < α < 1
2. αc marks the transition

from the gapless ‘spin-fluid’ phase (α < αc) to the ‘dimer’ phase (α > αc) with a gap.
The most precise value forαc = 0.241 167 has been reported recently by Eggert [11].
The structure of these two phases can be explored by means of the static and dynamical
correlation functions of appropriate operators. In the spin-fluid phase where 0< α < αc
the1S = 1 operator

S3(p) = 1√
N

N∑
x=1

eipxS3(x) (1.2)
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generates the transition from the singlet to the triplet excited state. To examine the dimer
phase whereα > αc we need a1S = 0 operator. These transitions are generated by the
dimer operator

D(p) = 1√
N

N∑
x=1

eipx(S(x) · S(x + 1)− 〈S(x) · S(x + 1)〉). (1.3)

The corresponding static structure factors

S3(α, p,N) = 〈S+3 (p)S3(p)〉 and D(α, p,N) = 〈D+(p)D(p)〉 (1.4)

behave as follows forN → ∞. S3(α, p = π,N) diverges logarithmically forα 6 αc
but stays finite forα > αc. D(α, p = π,N) diverges with a power law depending onα
for α > αc and stays finite forα < αc. The power behaviour changes to a logarithmic
behaviour forα = αc.

In the presence of an external fieldB the ground state of the model has total spin
S = MN , whereM = M(α,B) is the magnetization. The behaviour of the magnetization
curveM(α,B) near saturation (B → Bs , M → 1

2) changes withα [12].
At α = 0 it is known to develop a square-root singularity [13]:

M(α = 0, B)→ 1

2
− 1

π
(Bs − B)1/2 for B → Bs (1.5)

whereas the numerical data forα = 1
4 (N 6 28) support a quartic-root singularity forα = 1

4
[12]:

M

(
α = 1

4
, B

)
→ 1

2
− 1

2ε1/4
4

(Bs − B)1/4 ε4 = 1.70(5) for B → Bs. (1.6)

The gap in the dimer phaseα > αc appears in the weak-field behaviour of the magnetization
curve:

M(α,B)→ 0 B < Bc(α) α > αc. (1.7)

Note that the model withB > Bc(α) is gapless, provided that there are no ‘plateaus’
(M(α,B) = constant forB1c 6 B 6 B2c) in the magnetization curve.

The momentum of the ground statepS follows Marshall’s sign rule [14]:

pS = 0 for 2S +N = 4n

pS = π for 2S +N = 4n+ 2
(1.8)

for 0< α < 1
4.

The singularities in the static structure factors change if we switch on an external field:
the transverse structure factor atp = π

S1(α, p = π,M,N) ≈ B1(α,M)N
1−η1(α,M) + A1(α,M) (1.9)

diverges with a field-dependent critical exponentη1(α,M). η1(α = 0,M) has been calc-
ulated in [15] by means of the Betheansatz. A second, weaker singularity, which moves
with the external field, appears at the soft-mode momentump = p1(M) = 2πM. To our
knowledge, the positions of both singularities are independent ofα. The critical exponent
η1(α,M), however, does depend onα. It has been found to take the values [16]

η1

(
α = 0,M = 1

4

)
= 0.65(2) and η1

(
α = 1

4
,M = 1

4

)
= 1.16(2). (1.10)
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The longitudinal structure factor atp = π (M > 0) stays finite forα < 1
4 but develops a

singularity at the field-dependent soft-mode momentump = p3(M) = π(1− 2M):

S3(α, p = p3(M),M,N) ≈ B3(α,M)N
1−η3(α,M) + A3(α,M). (1.11)

Again, the position of the singularity does not depend onα, whereas the critical exponent
η3(α,M) changes drastically withα:

η3

(
α = 0,M = 1

4

)
= 1.50 and η3

(
α = 1

4
,M = 1

4

)
= 0.84. (1.12)

The soft-mode singularity atp = p3(M) is also found in the dimer structure factor
D(α, p,N) defined in (1.3) and (1.4). A finite-size analysis of the type (1.11) forD(α, p,N)

yields for the critical exponents [16]

ηD

(
α = 0,M = 1

4

)
= 1.49 and ηD

(
α = 1

4
,M = 1

4

)
= 0.82. (1.13)

These values almost coincide with those of the longitudinal structure factor given in (1.12).
It is the purpose of this paper to determine the completeα-dependence of the critical

exponentsη1(α,M), η3(α,M).
The paper is organized as follows. In section 2 we explore the range of validity of

Marshall’s sign rule (1.8). In section 3 we study the impact of the next-nearest-neighbour
coupling on the low-lying excitations and on the static structure factors. The latter are
computed numerically for system sizes up toN = 32. A finite-size analysis of (1.9) and
(1.11) yields the critical exponentsη1(α,M), η3(α,M). Section 4 is devoted to the study
of an unexpected phenomenon, which we found for negativeα-values: forα < α−(M) the
finite-size behaviour of the longitudinal structure factor (1.11) changes systematically from
a monotonic increase to a decrease.

2. The impact of frustration on the ground states; level crossings

It was pointed out in the introduction that the momentapS(α) of the ground states
|S, Sz = S, pS(α)〉 in the sectors with total spinS follow Marshall’s sign rule forα 6 1

4.
We found deviations from this rule for

α > α0(M). (2.1)

We computed the ground-state energiesE(α, pS(α),M,N) for small systems withN =
10, . . . ,20 sites. The dependence on the frustration parameterα is shown in figure 1 for
N = 12. Here we have marked the different ground-state momenta with different symbols.

At M = S/N = 0, deviations from Marshall’s sign rule occur first at

α0(M = 0) = 1

2
. (2.2)

Here we meet the Majumdar–Ghosh model [10], which is known to have two degenerate
ground states, namely dimer states with momentap = 0 andp = π .

A twofold degeneracy—with respect to the ground-state momentap
(1)
S (α) andp(2)S (α)—

emerges along the whole curveα = α0(M), which is plotted forN = 10, . . . ,20 in figure 2.
The first momentum of the ground state,p(1)S (α0), follows Marshall’s sign rule (1.8).

We have looked for an empirical rule for the second momentum,p
(2)
S (α0), but we did not

find such a rule which holds for all momenta and system sizesN .
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Figure 1. The ground-state energiesE(α, pS,M = S/N,N) in the sector with total spinS
on a ring withN = 12 sites. The ground-state momentapS(α) change with the next-nearest-
neighbour couplingα as indicated by the different symbols.

In the saturating-field limitM → 1
2, the curveα0(M) meets the point

α0

(
M → 1

2

)
= 1

4
. (2.3)

Indeed, the eigenvalue problem can be solved analytically forS = N/2−1 with theansatz
(one-magnon states)∣∣∣∣p, S = N

2
− 1

〉
= 1√

N

∑
x

eipx |x〉 (2.4)

where |x〉 denotes a spin state with spin− 1
2 at sitex and spin 1

2 at all other sites. The
energy of the one-magnon state is found to be

E

(
α, p,M = 1

2
− 1

N
,N

)
= 2 cosp + 2α cos(2p)+

(
N

2
− 2

)
(1+ α). (2.5)

The ground-state energy and its momentump = pS(α) follow by minimizing (2.5) with
respect top. For α < 1

4 the ground-state momentum is found to bep(1)S (α) = π, S =
N/2− 1, in accord with Marshall’s sign rule. Forα > 1

4, however, the minimum is found

for p = p(2)S (α) where

cosp(2)S (α) = −
1

4α
S = N

2
− 1 N →∞. (2.6)

On finite lattices, the difference between the two momenta turns out to be

1pS

(
α0 = 1

4

)
=
∣∣∣∣p(1)S (α0 = 1

4

)
− p(2)S

(
α0 = 1

4

)∣∣∣∣ = 2π

N
S = N

2
− 1. (2.7)
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Figure 2. The curveα = α0(M = S/N), where the ground state|S, p〉 in the sector with total
spin S is degenerate with respect to the momentump = p(1)S (α), p

(2)
S (α).

As a consequence of the level crossing atα = α0(M = S/N), M fixed, the derivatives of
the ground-state energies

∂

∂α
E

(
α, pS(α),M = S

N
,N

)
(2.8)

change discontinuously, as can be seen in an enlargement of figure 1.

3. Soft modes in the excitation spectrum and the associatedη-exponents

We have studied the finite-size dependence of the energy gaps

ω1S(α, p,M,N) = E
(
α, pS + p,M = S +1S

N
,N

)
− E

(
α, pS,M = S

N
,N

)
(3.1)

for 1S = 0 and1S = 1 in the domainα < α0(M) where the ground-state momentumpS
follows Marshall’s sign rule. In this regime the gapω1S=1(α, p = π,M,N) vanishes in
the thermodynamical limit in such a way that the scaled quantity

lim
N→∞

Nω1S=1(α, p = π,M,N) = �1(α,M) α < α0(M) (3.2)

converges to a finite non-vanishing limit. The same holds for the gapω1S=0(α, p =
p3(M),M,N), p3(M) = π(1− 2M), if the next-nearest-neighbour couplingα is positive:

lim
N→∞

Nω1S=0(α, p = p3(M),M,N) = �3(α,M). (3.3)
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Figure 3. The finite-size dependence of the gapω1S=1(α, p3(M),M,N) for α = 0.1, 0.0,
−0.1,−0.2,−0.3,−0.4,−0.5.

For negativeα-values (α < α−(M) < 0), however, we observe a tendency in the numerical
data which at least hints at the emergence of a gap at the momentump = p3(M):

lim
N→∞

ω1S=0(α, p = p3(M),M,N) = 13(α,M) α < α−(M) < 0 (3.4)

as can be seen from figure 3. It is hard to decide from the finite-system results (where
N = 16, 20, 24) the exact positionα = α−(M) at which the gap (3.4) opens.

In the gapless regimes, where (3.2) and (3.3) are valid, we expect that the critical
behaviour of the system is properly described by conformal field theory [17]. This means
in particular that the ratios

2θa(α,M) = �a(α,M)

πv(α,M)
a = 3, 1 (3.5)

can be identified with the critical exponentsηa(α,M) [18–20]:

2θa(α,M) = ηa(α,M) a = 1, 3. (3.6)

Here

v(α,M) = 1

2π
lim
N→∞

N

(
E

(
α, p = pS + 2π

N
,M = S

N
,N

)
− E

(
α, pS,M = S

N
,N

))
(3.7)

is the spin-wave velocity. For fixed values ofM (M = 1
6,

1
4,

1
3) we have determined the

α-dependence of 2θa(α,M), a = 1, 3, from the energy differences (3.1) and (3.7) as they
enter in the ratios (3.5). The result can be seen from the solid curves in figures 4(a), 4(b),
4(c). The solid dots represent the determination of the critical exponentsη1(α,M), η3(α,M)

as they follow from a fit of the form (1.9), (1.11) to the finite-system results (N 6 32).
Comparing the two determinations we come to the following conclusions.
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Figure 4. Comparison of the ratio 2θi (α,M), i = 1, 3, equation (3.5) (solid curves), and the
critical exponentsηi(α,M), i = 1, 3, in the static structure factors given by equations (1.9) and
(1.11). (a)M = 1

6 , (b) M = 1
4 , (c) M = 1

3 . Open symbols forη3(α,M) and dashed symbols
for 2θ3(α,M) have been used forα < α−(M), where we expect a breakdown of the finite-size
ansatz(1.11).
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(i) The identity 2θ1(α,M) = η1(α,M) for the critical exponent in the transverse structure
factor is well established for−0.5< α < 0.25.

The same holds for the identity 2θ3(α,M) = η3(α,M) for the critical exponent in
the longitudinal structure factor in the interval 0< α < 0.25. If we approach the curve
α = α0(M), the convergence of the Lanczos algorithm slows down more and more, due to
the emergence of the level crossing discussed in section 2.

(ii) The two curves 2θ1(α,M), 2θ3(α,M) cross each other atα = αc(M):
2θ1(αc(M),M) = 2θ3(αc(M),M) = 2θ(M) (3.8)

where

αc

(
M = 1

6

)
= 0.18 αc

(
M = 1

4

)
= 0.20 αc

(
M = 1

3

)
= 0.24 (3.9)

and

2θ

(
M = 1

6

)
= 1.01 2θ

(
M = 1

4

)
= 1.02 2θ

(
M = 1

3

)
= 1.02. (3.10)

Theα-values are quite close to the point of the transitionαc(M = 0) = 0.241 from the spin
fluid to the dimer phase. The same holds for the critical exponentsη(M), which deviate
only slightly from η(M = 0) = 1.

(iii) The relation

4θ1(α,M)θ3(α,M) = 1 (3.11)

appears to be satisfied within a few per cent for 06 α 6 1
4.

(iv) For negative values ofα, the ratio 2θ3(α,M) is smooth, whereas the results for
η3(α,M) seem to develop a discontinuous structure. We suggest, that this is an artefact
of the simpleansatz(1.11), which is no longer able to adequately describe the finite-size
dependence of the longitudinal structure factor. Surprisingly enough, the latter changes
drastically withα.

For α > α−(M),

α−

(
M = 1

6

)
= −0.31 α−

(
M = 1

4

)
= −0.19 α−

(
M = 1

3

)
= −0.15 (3.12)

the longitudinal structure factor increases monotonically withN , whereas it decreases for
α < α−(M). In the latter regime we expect the emergence of the gap (3.4).

4. The disappearance of a field-dependent soft mode

The changes in the finite-size dependence of the gap (3.3), (3.4), and ofS3(α, p3(M),M,N)

provide us with a first hint that the field-dependent soft mode atp = p3(M) = π(1− 2M)
might disappear forα < α−(M). In this section, we are looking for further evidence
for this hypothesis. In figures 5(a), 5(b) we compare the momentum distribution of
S3(α, p,M = 1

4, N) for α = α−(M = 1
4) = −0.19 andα = −0.4, respectively. At

α = α−(M = 1
4) = −0.19 (figure 5(a)) the momentum distribution is well approximated by

two straight lines with different slopes forp < p3(M) andp > p3(M), respectively. This
discontinuity is more and more washed out if the next-nearest-neighbour coupling decreases
further. For example, atα = −0.4 (figure 5(b)) thep-distribution of the longitudinal
structure factor appears to be smooth in the thermodynamic limit. The approach to this
limit is indicated by an arrow.S3(α, p,M,N), α 6 α−(M), is monotonically decreasing
with N for p 6 p3(M) but increasing forp > p3(M).
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Figure 5. The momentum dependence of the longitudinal structure factorS3(α, p,M =
1
4 , N),N = 28, 24, 20, . . .. (a) α = α−(M = 1

4) = −0.19, (b)α = −0.40.

A more drastic effect can be seen in the dynamical structure factor:

S3(α, ω, p,M,N) =
∑
n

δ(ω − (En − Es))|〈n|S3(p)|S〉|2 (4.1)

which we computed by means of the recursion method [21, 22] forM = 1
4 andN = 28.

HereEs andEn denote the energies in the ground state|S〉 with total spinS and the excited
states|n〉. The excitation spectrum is plotted in figures 6(a), 6(b) forα = −0.19 and
α = −0.4, respectively. The numbers denote the corresponding relative spectral weight in
percentage terms. Open symbols represent excitations with a relative spectral weight less
than 10%. The curves guide the eye to the excitations with dominant spectral weight. For
α = −0.19 (figure 6(a)) the spectral weight is distributed over a band of excitation energies
which broadens in the vicinity of the momentump = p3(M). For α = −0.4 (figure
6(b)), however, the spectral weight is more concentrated at higher excitation energies. In
particular, the lowest excitation atp = p3(M) has a relative spectral weight less than 10%
for N = 28.

5. Discussion and conclusion

In this paper, we have studied the impact of a next-nearest-neighbour couplingα and an
external fieldB on the zero-temperature properties of the one-dimensional spin-1

2 antiferro-
magnetic Heisenberg model. We found the following features.

(i) The momentum of the ground state follows Marshall’s sign rule (1.8) forα 6 α0(M)

whereα0(0) = 1
2 andα0(

1
2) = 1

4. The ground state is twofold degenerate with respect to
its momentum forα = α0(M).
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Figure 6. Excitation energies and relative spectral weights in the dynamical structure factor
S3(α, ω, p,M = 1

4 , N = 28) in percentage terms. The lines connect the excitations with the
dominant spectral weight. (a)α = α−(M = 1

4) = −0.19, (b)α = −0.4.

(ii) A study of the finite-size dependences (1.9) and (1.11) yields theα-dependence
of the critical exponentsη1(α,M), η3(α,M) associated with the soft-mode singularities at
p = π and p = p3(M) in the transverse and longitudinal structure factor, respectively.
Good agreement is found with the prediction (3.5), (3.6) of conformal field theory for
η1(α,M) when − 1

2 < α < 1
4 and for η3(α,M) when 0< α < 1

4 (figures 4(a)–4(c)).
For theseα-values the spectral weight—entering into the definition of the corresponding
dynamical structure factors (4.1)—is concentrated around the lower bound of the excitation
spectrum. This seems to be a crucial condition for the critical behaviour to be described
correctly by conformal field theory. In the thermodynamical limit the dynamical structure
factors S1(α, ω, p = π,M) and S3(α, ω, p = p3(M),M) develop infrared singularities
ω−(2−ηa(α)), a = 1, 3, which can clearly be seen in a finite-size scaling analysis. Such an
analysis was performed in [15] forα = 0.

(iii) Deviations from the relation (3.6)—predicted by conformal field theory—appear
in the longitudinal case wherea = 3 (figures 4(a)–4(c)) for negative values of the next-
nearest-neighbour coupling and increasingM-values. This is accompanied by the fact that
the spectral weight in (4.1) is distributed over a band of excitation energies, which broadens
with decreasing values ofα.

(iv) There are several indications that the field-dependent soft mode atp = p3(M) =
π(1−2M) disappears for negative next-nearest-neighbour couplingsα < α−(M) < 0: a gap
(3.4) opens and the longitudinal structure factor (1.11) changes its finite-size dependence
from a monotonic increase to a decrease. Moreover, the cusp-like singularity in the
momentum dependence atp = p3(M) is washed out and the spectral weight in (4.1)
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is shifted from low to higher excitation energies.
Therefore, we find a further confirmation of the hypothesis formulated in [23]—

namely, that field-dependent soft modes only exist if the system is sufficiently frustrated.
As was pointed out in [23] this condition is not satisfied in the two-dimensional spin-1

2
antiferromagnetic Heisenberg model with nearest-neighbour coupling.
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