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Abstract. We investigate the critical exponents(c, M) and n1(«, M) associated with the
singularities in the longitudinal and transverse structure factors of the one-dimensional antiferro-
magnetic Heisenberg model with nearesk;-] and next-nearest-/§-) neighbour coupling of
relative strengthe = J»/J; and an external field with magnetizationM (B).

1. Introduction

In this paper we are going to study the critical behaviour in the one—dimensionafél spin-
antiferromagnetic Heisenberg model

N N
H=2%(S(x)-S(x+1+aSx)-Sx+2)—2B)  Ss(x) (1.1)

x=1 x=1

with next-nearest-neighbour couplirg and external fieldB. The phase structure in the
absence of an external field (= 0) has been studied intensively before [1-11]. Let us
briefly summarize those results relevant for our later investigation. The ground state of the
model is a singlet{ = 0) state with momentunpy, wherepg = 0 for N = 4,8,12, ...
and po = 7 for N = 6,10, 14, .... This statement holds far < ;. At o« = ; the model
reduces to the Majumdar—Ghosh model [10] with degenerate dimer ground states.

The quantum numbers of the first excited state change avittmere is a triplet § = 1)
state for O< ¢ < «. and a singlet { = 0) state fora, < « < % a, marks the transition
from the gapless ‘spin-fluid’ phaser (< «.) to the ‘dimer’ phased > «.) with a gap.
The most precise value far, = 0.241 167 has been reported recently by Eggert [11].
The structure of these two phases can be explored by means of the static and dynamical
correlation functions of appropriate operators. In the spin-fluid phase wherexO< «,
the AS = 1 operator

1 N

S3(p) = gres. 1.2
3(p) IN & 3(x) (1.2)
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generates the transition from the singlet to the triplet excited state. To examine the dimer
phase wherer > «. we need aAS = 0 operator. These transitions are generated by the
dimer operator

N
D(p) = Jlﬁ lee"”‘(S(x) <Sx+1D —(Sx)-Sx+ D). (1.3)
The corresponding static structure factors
Sa(e, p, N) = (S5 (p)Sa(p)) and D(a, p, N) = (D*(p)D(p)) (1.4)

behave as follows foiv — oco. S3(a, p = 7, N) diverges logarithmically forx < «.
but stays finite forw > «.. D(a, p = 7, N) diverges with a power law depending an
for « > a. and stays finite foox < a.. The power behaviour changes to a logarithmic
behaviour fora = «,.

In the presence of an external fiegl the ground state of the model has total spin
S = MN, whereM = M(a, B) is the magnetization. The behaviour of the magnetization
curve M («, B) near saturationk — B;, M — %) changes withx [12].

At « = 0 it is known to develop a square-root singularity [13]:

1 1
M(x =0,B) —> 5 Z(B, — B)Y? for B — B, (1.5)
T

whereas the numerical data for= ;11 (N < 28) support a quartic-root singularity for = 2

4
[12]:

1 1 1
M<a =, B) = o= 1B — B)Y4 €4 = 1.70(5) for B — B,. (1.6)
4 2 2,

The gap in the dimer phase> «. appears in the weak-field behaviour of the magnetization
curve:

M(x,B) — 0 B < B.() o> o .7

Note that the model withB > B.(«) is gapless, provided that there are no ‘plateaus’
(M(a, B) = constant forB;. < B < By.) in the magnetization curve.
The momentum of the ground stapg follows Marshall’s sign rule [14]:
ps =0 for 2S+ N =4n
ps =T for2S+ N=4n+2
forO<a < 211-
The singularities in the static structure factors change if we switch on an external field:
the transverse structure factorjat=

(1.8)

Si(a, p =7, M, N) ~ By(a, M)N*" @M 4 Ay (a, M) (1.9)

diverges with a field-dependent critical exponentx, M). ni(e = 0, M) has been calc-
ulated in [15] by means of the Bettamsatz A second, weaker singularity, which moves
with the external field, appears at the soft-mode momengum p1(M) = 2z M. To our
knowledge, the positions of both singularities are independent dfhe critical exponent
n(a, M), however, does depend an It has been found to take the values [16]

1

n1<a =0, M= i) = 0.65(2) and n1<a = M= i) = 1.16(2). (1.10)
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The longitudinal structure factor at = = (M > 0) stays finite fore < 211 but develops a
singularity at the field-dependent soft-mode momengue p3(M) = n(1 — 2M):

Sa(a, p = pa(M), M, N) ~ Ba(or, M)N* M + Ag(ar, M). (1.11)

Again, the position of the singularity does not dependogmwvhereas the critical exponent
ns3(a, M) changes drastically with:

1 1 1
173(0{ =0, M = 4> =1.50 and 773<ot = M = 4) = 0.84. (1.12)
The soft-mode singularity ap = p3(M) is also found in the dimer structure factor
D(a, p, N) defined in (1.3) and (1.4). A finite-size analysis of the type (1.11)far, p, N)
yields for the critical exponents [16]

4 4

These values almost coincide with those of the longitudinal structure factor given in (1.12).

It is the purpose of this paper to determine the completiependence of the critical
exponents) (o, M), n3(ce, M).

The paper is organized as follows. In section 2 we explore the range of validity of
Marshall’s sign rule (1.8). In section 3 we study the impact of the next-nearest-neighbour
coupling on the low-lying excitations and on the static structure factors. The latter are
computed numerically for system sizes upNo= 32. A finite-size analysis of (1.9) and
(1.11) yields the critical exponenig («, M), n3(a, M). Section 4 is devoted to the study
of an unexpected phenomenon, which we found for negativalues: fore < «_ (M) the
finite-size behaviour of the longitudinal structure factor (1.11) changes systematically from
a monotonic increase to a decrease.

1 1 1
m)(ot =0,M = 4) =149 and nD<a =-,M= ) =0.82 (1.13)

2. The impact of frustration on the ground states; level crossings

It was pointed out in the introduction that the momenta(«) of the ground states
IS, S, = S, ps(a)) in the sectors with total spi§ follow Marshall’s sign rule fore < 211.
We found deviations from this rule for

o > ag(M). (2.1)

We computed the ground-state energtegr, ps(a), M, N) for small systems withV =
10, ..., 20 sites. The dependence on the frustration paranmaetsrshown in figure 1 for
N = 12. Here we have marked the different ground-state momenta with different symbols.

At M = S/N = 0, deviations from Marshall’s sign rule occur first at

1
ag(M =0) = > (2.2)

Here we meet the Majumdar—-Ghosh model [10], which is known to have two degenerate
ground states, namely dimer states with momenta 0 andp = .

A twofold degeneracy—with respect to the ground-state morryefl’cax) and péz) ()—
emerges along the whole cur#e= o(M), which is plotted forN = 10, ..., 20 in figure 2.

The first momentum of the ground sta’;@?)(ao), follows Marshall’'s sign rule (1.8).

We have looked for an empirical rule for the second momentplﬁ’i(ao), but we did not
find such a rule which holds for all momenta and system sies
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Figure 1. The ground-state energids(«, ps, M = S/N, N) in the sector with total spir§
on a ring withN = 12 sites. The ground-state momenig(«) change with the next-nearest-
neighbour couplingr as indicated by the different symbols.

In the saturating-field limitV — % the curveag(M) meets the point

1 1

it 1) =2 o3

Indeed, the eigenvalue problem can be solved analytically for N /2 — 1 with theansatz
(one-magnon states)

N 1 -
S=—-—-1)= ") d]x) 2.4

”’ 2 > N3 @
where |x) denotes a spin state with spm% at sitex and spin% at all other sites. The
energy of the one-magnon state is found to be

1 1 N
E(oz, p, M= 27N N) = 2C0Sp + 20 co92p) + <2 — 2)(1+ot). (2.5)

The ground-state energy and its momentprna= ps(«) follow by minimizing (2.5) with
respect top. Fora < 211 the ground-state momentum is found to pﬁ)(a) =8 =
N/2 -1, in accord with Marshall’s sign rule. For > 211, however, the minimum is found
for p = péz)(oe) where

cosp? (a) = —% S = % -1 N — oo. (2.6)
On finite lattices, the difference between the two momenta turns out to be

1 1 1 2n N
T - P

N 2




n-exponents in the 1D antiferromagnetic Heisenberg model 3439

08 + s 1
*
L4 A

s + N=10

. i . N=12

e’ . e N=16
06 + ’ & N=18 L

; + N=20

S
*
04 1 . 1
.
LA
os

0 005 01 015 02 025 03 035 04 045

Figure 2. The curvea = ag(M = S/N), where the ground staié, p) in the sector with total

spin S is degenerate with respect to the momenture p” (@), p'2 (@).

As a consequence of the level crossingrat ag(M = S/N), M fixed, the derivatives of
the ground-state energies

d S
80[E(oz, ps(a), M = N N) (2.8)

change discontinuously, as can be seen in an enlargement of figure 1.

3. Soft modes in the excitation spectrum and the associategtexponents

We have studied the finite-size dependence of the energy gaps

S+ AS S
a)AS(avvavN):Eava—‘f_va: N »N _EavavM:N,N (31)

for AS =0 andAS = 1 in the domainx < «g(M) where the ground-state momentyrmg
follows Marshall’s sign rule. In this regime the gaps—1(«, p = 7, M, N) vanishes in
the thermodynamical limit in such a way that the scaled quantity

A!im Nwps-1(a, p =7, M, N) = Q1(a, M) o < ag(M) 3.2)
— 00

converges to a finite non-vanishing limit. The same holds for the @apo(a, p =
p3(M), M, N), ps(M) = w(1 — 2M), if the next-nearest-neighbour couplingis positive:

1\!@00 Nwps—ola, p = p3(M), M, N) = Qa(a, M). (3.3)
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Figure 3. The finite-size dependence of the gaps—1(«, p3(M), M, N) for « = 0.1, 0.0,
-0.1,-0.2,-0.3, —0.4, —0.5.

For negativex-values & < o (M) < 0), however, we observe a tendency in the numerical
data which at least hints at the emergence of a gap at the momenitms(M):

1\!im was=o(at, p = p3(M), M, N) = Az(ar, M) a<a-(M)<0 3.4)

as can be seen from figure 3. It is hard to decide from the finite-system results (where
N = 16, 20, 24) the exact position = «_ (M) at which the gap (3.4) opens.

In the gapless regimes, where (3.2) and (3.3) are valid, we expect that the critical
behaviour of the system is properly described by conformal field theory [17]. This means
in particular that the ratios

Q,(a, M
20,0, My = @M 5y (3.5)
mv(a, M)
can be identified with the critical exponenfs(«, M) [18-20]:
20, (a, M) = n,(a, M) a=1,3. (3.6)
Here
@M =T iim ~(E s+ T u=3N)-kE M=5 N
vaa _ZNHOO 05,]7—[75 Wa _N’ aapSv _Na
3.7)
is the spin-wave velocity. For fixed values df (M = £, 1, 1) we have determined the

a-dependence of @(«, M), a = 1, 3, from the energy differences (3.1) and (3.7) as they
enter in the ratios (3.5). The result can be seen from the solid curves in figures 4(a), 4(b),
4(c). The solid dots represent the determination of the critical expone@isM), nz(a, M)

as they follow from a fit of the form (1.9), (1.11) to the finite-system resuls< 32).
Comparing the two determinations we come to the following conclusions.
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Figure 4. Comparison of the ratio®(«, M), i = 1, 3, equation (3.5) (solid curves), and the
critical exponents); (o, M), i = 1, 3, in the static structure factors given by equations (1.9) and
(1.11). (@M = %, (b) M = 1, (c) M = %. Open symbols fors(e, M) and dashed symbols
for 203(a, M) have been used far < a_ (M), where we expect a breakdown of the finite-size
ansatz(1.11).
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(i) The identity D1(«, M) = n1(a, M) for the critical exponent in the transverse structure
factor is well established for0.5 < o < 0.25.

The same holds for the identityo2a, M) = n3(a, M) for the critical exponent in
the longitudinal structure factor in the interval0 « < 0.25. If we approach the curve
o = ag(M), the convergence of the Lanczos algorithm slows down more and more, due to
the emergence of the level crossing discussed in section 2.

(i) The two curves 2;(a, M), 263(c, M) cross each other at = a.(M):

201 (o (M), M) = 203(at. (M), M) = 20(M) (3.8)
where
1 1 1
o (M = 6) =0.18 o <M = 4) =0.20 ac(M = 3) =0.24 (3.9
and
1 1 1
20 (M = 6) =1.01 29<M = 4) =1.02 29<M = 3) =1.02 (3.10)

The «-values are quite close to the point of the transitigM = 0) = 0.241 from the spin
fluid to the dimer phase. The same holds for the critical expongfits), which deviate
only slightly fromn(M = 0) = 1.

(iii) The relation

401 (e, M)O3(cr, M) = 1 (3.11)

appears to be satisfied within a few per cent fo£ @ < 211.

(iv) For negative values od, the ratio @;(«, M) is smooth, whereas the results for
n3(a, M) seem to develop a discontinuous structure. We suggest, that this is an artefact
of the simpleansatz(1.11), which is no longer able to adequately describe the finite-size
dependence of the longitudinal structure factor. Surprisingly enough, the latter changes
drastically witha.

Fora > a_(M),

1 1 1
o <M = 6) =-031 o (M = 4) =-0.19 a(M = 3) =-015 (3.12)

the longitudinal structure factor increases monotonically withwhereas it decreases for
a < a_(M). In the latter regime we expect the emergence of the gap (3.4).

4. The disappearance of a field-dependent soft mode

The changes in the finite-size dependence of the gap (3.3), (3.4), &s@ops(M), M, N)
provide us with a first hint that the field-dependent soft modg at p3(M) = (1 — 2M)

might disappear foix < «_(M). In this section, we are looking for further evidence
for this hypothesis. In figures 5(a), 5(b) we compare the momentum distribution of
Ss(,p,M = 3, N) for « = a_(M = }) = —0.19 ande = —0.4, respectively. At
a=a_ (M= 211) = —0.19 (figure 5(a)) the momentum distribution is well approximated by
two straight lines with different slopes for < p3(M) and p > p3(M), respectively. This
discontinuity is more and more washed out if the next-nearest-neighbour coupling decreases
further. For example, at = —0.4 (figure 5(b)) thep-distribution of the longitudinal
structure factor appears to be smooth in the thermodynamic limit. The approach to this
limit is indicated by an arrow.S3(«, p, M, N), @ < a_(M), is monotonically decreasing
with N for p < p3(M) but increasing forp > p3(M).
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Figure 5. The momentum dependence of the longitudinal structure fagiow, p, M =
IN),N=282420...@a=a(M=1)=-019, (b)ae = —0.40.

A more drastic effect can be seen in the dynamical structure factor:

Sa(e, ®, p, M, N) =Y 8(w — (E, — E,))|(n|Sa(p)|S)[? (4.2)

which we computed by means of the recursion method [21, 22]\fox 211 and N = 28.
Here E; and E, denote the energies in the ground siatewith total spinS and the excited
states|n). The excitation spectrum is plotted in figures 6(a), 6(b) do= —0.19 and

o = —0.4, respectively. The numbers denote the corresponding relative spectral weight in
percentage terms. Open symbols represent excitations with a relative spectral weight less
than 10%. The curves guide the eye to the excitations with dominant spectral weight. For
a = —0.19 (figure 6(a)) the spectral weight is distributed over a band of excitation energies
which broadens in the vicinity of the momentum = p3(M). Fora = —0.4 (figure

6(b)), however, the spectral weight is more concentrated at higher excitation energies. In
particular, the lowest excitation at = p3(M) has a relative spectral weight less than 10%
for N = 28.

5. Discussion and conclusion

In this paper, we have studied the impact of a next-nearest-neighbour coupéing an
external fieldB on the zero-temperature properties of the one—dimensional%sa'rmferro-
magnetic Heisenberg model. We found the following features.

(i) The momentum of the ground state follows Marshall's sign rule (1.8xfet aq(M)
wherea(0) = 5 andag(3) = . The ground state is twofold degenerate with respect to
its momentum forx = ag(M).
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dominant spectral weight. (@) = o_ (M = %) =-0.19, (b)oe = —0.4.

(ii) A study of the finite-size dependences (1.9) and (1.11) yieldsatttependence
of the critical exponentg(«, M), ns3(«, M) associated with the soft-mode singularities at
p = m and p = p3(M) in the transverse and longitudinal structure factor, respectively.
Good agreement is found with the prediction (3.5), (3.6) of conformal field theory for
ni(e, M) when —1 < o < % and for ns(a, M) when 0 < o« < 1 (figures 4(a)-4(c)).

For thesex-values the spectral weight—entering into the definition of the corresponding
dynamical structure factors (4.1)—is concentrated around the lower bound of the excitation
spectrum. This seems to be a crucial condition for the critical behaviour to be described
correctly by conformal field theory. In the thermodynamical limit the dynamical structure
factors Si(«, w, p = 7w, M) and S3(«, w, p = p3(M), M) develop infrared singularities

w~ @@ 4 = 1,3, which can clearly be seen in a finite-size scaling analysis. Such an
analysis was performed in [15] fer = O.

(iif) Deviations from the relation (3.6)—predicted by conformal field theory—appear
in the longitudinal case where = 3 (figures 4(a)—4(c)) for negative values of the next-
nearest-neighbour coupling and increasMevalues. This is accompanied by the fact that
the spectral weight in (4.1) is distributed over a band of excitation energies, which broadens
with decreasing values of.

(iv) There are several indications that the field-dependent soft moge=atps(M) =
m(1—2M) disappears for negative next-nearest-neighbour couplingsx_ (M) < 0: agap
(3.4) opens and the longitudinal structure factor (1.11) changes its finite-size dependence
from a monotonic increase to a decrease. Moreover, the cusp-like singularity in the
momentum dependence at = p3(M) is washed out and the spectral weight in (4.1)
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is shifted from low to higher excitation energies.

Therefore, we find a further confirmation of the hypothesis formulated in [23]—
namely, that field-dependent soft modes only exist if the system is sufficiently frustrated.
As was pointed out in [23] this condition is not satisfied in the two-dimensional §pin-
antiferromagnetic Heisenberg model with nearest-neighbour coupling.

References

[1] Haldare F D M 1982Phys. RevB 25 4925 (erratum 198Phys. RevB 26 5257)
[2] Tonegawa T and Harada | 1987 Phys. Soc. Japab6 2153
Tonegawa T and Harada | 1988oc. Int. Conf. on Magnetism; J. Physique Coll. Sugi.C8 1411
[3] lgarashi J and Tonegawa T 198hys. RevB 40 756
Igarashi J and Tonegawa T 1989Phys. Soc. Japab8 2147
[4] Kuboki K and Fukuyama H 1983. Phys. Soc. Japah6 3126
[5] Affleck I, Gepner D, Schud H J and Ziman T 1989. Phys. A: Math. Ger22 511
[6] Tonegawa T and Harada | 1987 Phys. Soc. Japab6 2153
Tonegawa T and Harada | 1988oc. Int. Conf. on Magnetism; J. Physique Coll. Sugi.C8 1411
[7] Tonegawa T, Harada | and lgarashi J 19®@g. Theor. Phys. Suppl01513
[8] Tonegawa T, Harada | and Kaburagi M 1992Phys. Soc. Japaél 4665
[9] Okamoto K and Nomura K 199Phys. Lett.169A 433
[10] Majumda C K and Ghoh D K 1969J. Math. Phys10 1388
Majumda C K 1970J Phys. C: Solid State Phy3.911
[11] Eggert S 1996°hys. RevB 54 9612
[12] Schmidt M, Gerhardt C, Miter K-H and Karbach M 1996. Phys.: Condens. Matte8 553
[13] Yang C N and Yang C P 196Fhys. Rev150 321
Yang C N and Yang C P 196Bhys. Rev150 327
[14] Marshall W 1955Proc R. SocA 23248
[15] Fledderjohann A, Gerhardt C, iMter K-H, Schmitt A and Karbach M 199Bhys. RevB 54 7168
[16] Schmidt M 1996PhD ThesisUniversity of Wuppertal
[17] Card/ J L 1986Nucl. PhysB 270186
[18] Schulz H J and Ziman T 198®hys. RevB 33 6545
[19] Bogoliubov N M, Izergh A G and Korepn V E 1986Nucl. PhysB 275687
[20] Bogoliubov N M, Izergn A G and Reshetikini N Y 1987J. Phys. A: Math. Ger20 5361
[21] Fledderjohann A, Karbach M, ttter K-H and Wielath P 1998. Phys.: Condens. Mattét 8993
[22] Viswanath V S, Zhang S, Stolze J andiNér G 1994Phys. RevB 49 9702
Viswanah V S and Miller G 1994The Recursion Method—Application to Many Body Dynamics (Springer
Lecture Notes in Physics 28New York: Springer)
[23] Yang M S and Mitter K H 1997 Z. Phys.at press



